

www.renesas.com

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Technology Corp.
website (http://www.renesas.com).

All information contained in these materials, including products and product specifications,

represents information on the product at the time of publication and is subject to change by

Renesas Electronics Corp. without notice. Please review the latest information published by

Renesas Electronics Corp. through various means, including the Renesas Technology Corp.

website (http://www.renesas.com).

R01US0079ED0103
19.02.2014

U
s
e
r M

a
n
u
a
l

32

32

Data Flash Access Library

Type T01, European Release

RENESAS 32-Bit MCU
RH Family / RH850 Series

Installer:
RENESAS_FDL_RH850_T01E_V1.xx

Data Flash Access Library - Type T01, European Release Notice

R01US0079ED0103 2
User Manual

Notice

 All information included in this document is current as of the date this document is issued. Such information, 1.
however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics
products listed herein, please confirm the latest product information with a Renesas Electronics sales office.
Also, please pay regular and careful attention to additional and different information to be disclosed by
Renesas Electronics such as that disclosed through our website.

 Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other 2.
intellectual property rights of third parties by or arising from the use of Renesas Electronics products or
technical information described in this document. No license, express, implied or otherwise, is granted
hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

 You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether 3.
in whole or in part.

 Descriptions of circuits, software and other related information in this document are provided only to 4.
illustrate the operation of semiconductor products and application examples. You are fully responsible for
the incorporation of these circuits, software, and information in the design of your equipment. Renesas
Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of
these circuits, software, or information.

 When exporting the products or technology described in this document, you should comply with the 5.
applicable export control laws and regulations and follow the procedures required by such laws and
regulations. You should not use Renesas Electronics products or the technology described in this
document for any purpose relating to military applications or use by the military, including but not limited to
the development of weapons of mass destruction. Renesas Electronics products and technology may not
be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

 Renesas Electronics has used reasonable care in preparing the information included in this document, but 6.
Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no
liability whatsoever for any damages incurred by you resulting from errors in or omissions from the
information included herein.

 Renesas Electronics products are classified according to the following three quality grades: “Standard”, 7.
“High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product
depends on the product’s quality grade, as indicated below. You must check the quality grade of each
Renesas Electronics product before using it in a particular application. You may not use any Renesas
Electronics product for any application categorized as “Specific” without the prior written consent of
Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall
not be in any way liable for any damages or losses incurred by you or third parties arising from the use of
any Renesas Electronics product for an application categorized as “Specific” or for which the product is not
intended where you have failed to obtain the prior written consent of Renesas Electronics.

Data Flash Access Library - Type T01, European Release Notice

R01US0079ED0103 3
User Manual

 The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in 8.
a Renesas Electronics data sheets or data books, etc.

Computers; office equipment; communications equipment; test and measurement equipment;
audio and visual equipment; home electronic appliances; machine tools; personal electronic
equipment; and industrial robots.

Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster
systems; anti- crime systems; safety equipment; and medical equipment not specifically
designed for life support.

Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical
equipment or systems for life support (e.g. artificial life support devices or systems), surgical
implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or
purposes that pose a direct threat to human life.

 You should use the Renesas Electronics products described in this document within the range specified by 9.
Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range,
movement power voltage range, heat radiation characteristics, installation and other product characteristics.
Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas
Electronics products beyond such specified ranges.

 Although Renesas Electronics endeavours to improve the quality and reliability of its products, 10.
semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and
malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to
radiation resistance design. Please be sure to implement safety measures to guard them against the
possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas
Electronics product, such as safety design for hardware and software including but not limited to
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any
other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,
please evaluate the safety of the final products or system manufactured by you.

 Please contact a Renesas Electronics sales office for details as to environmental matters such as the 11.
environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products
in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled
substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability
for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

 This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written 12.
consent of Renesas Electronics.

 Please contact a Renesas Electronics sales office if you have any questions regarding the information 13.
contained in this document or Renesas Electronics products, or if you have any other inquiries.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and
also includes its majority- owned subsidiaries.

“Renesas Electronics product(s)” means any product developed or manufactured by or for
Renesas Electronics.

“Standard”:

“High
Quality”:

“Specific”:

Note 1

Note 2

Data Flash Access Library - Type T01, European Release Regional information

R01US0079ED0103 4
User Manual

Regional information

Some information contained in this document may vary from country to country. Before using any Renesas
Electronics product in your application, please contact the Renesas Electronics office in your country to obtain a
list of authorized representatives and distributors. They will verify:

 Device availability

 Ordering information

 Product release schedule

 Availability of related technical literature

 Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

 Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from
country to country.

Visit

http://www.renesas.com

to get in contact with your regional representatives and distributors.

http://www.renesas.com/

Data Flash Access Library - Type T01, European Release Preface

R01US0079ED0103 5
User Manual

Preface

This manual is intended for users who want to understand the functions of the concerned
libraries.

This manual presents the software manual for the concerned libraries.

Additional remark or tip

Item deserving extra attention

Binary: xxxx or xxxB

Decimal: xxxx

Hexadecimal xxxxH or 0x xxxx

Representing powers of 2 (address space, memory capacity):

K (kilo) 210 = 1024

M (mega): 220 = 1024
2
 = 1,048,576

G (giga): 230 = 1024
3
 = 1,073,741,824

X, x = don’t care

Block diagrams do not necessarily show the exact software flow but the functional structure.
Timing diagrams are for functional explanation purposes only, without any relevance to the real
hardware implementation.

Readers

Purpose

Note

Caution

Numeric
notation

Numeric
prefix

Register

Diagrams

Data Flash Access Library - Type T01, European Release How to Use This Document

R01US0079ED0103 6
User Manual

How to Use This Document

(1) Purpose and Target Readers

This manual is designed to provide the user with an understanding of the functions and characteristics of the
Self-Programming Library. It is intended for users designing application systems incorporating the library. A
basic knowledge of embedded systems is necessary in order to use this manual. The manual comprises an
overview of the library, API description, usage notes and cautions.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur within
the body of the text, at the end of each section, and in the Cautions section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to
the text of the manual for details.

(2) List of Abbreviations and Acronyms

Abbreviation Full form

Bootloader
A piece of software located in the Boot Cluster handling
the reprogramming of the device

Code Flash
Embedded Flash where the application code or
constant data is stored.

Data Flash
Embedded Flash where mainly the data of the
EEPROM emulation are stored.

Dual Operation

Dual operation is the capability to access flash memory
during reprogramming of another flash memory range.

Dual operation is available between Code Flash and
Data Flash.

Between different Code Flash macros dual operation
depends on the device implementation.

ECC Error Correction Code

EEL EEPROM Emulation Library

EEPROM Electrically erasable programmable read-only memory

EEPROM emulation

In distinction to a real EEPROM the EEPROM
emulation uses some portion of the flash memory to
emulate the EEPROM behavior. To gain a similar
behavior some side parameters have to be taken in
account.

FCL Code Flash Library (Code Flash access layer)

FDL Data Flash Library (Data Flash access layer)

FHVE
Software protection of flash memory against
programming and erasure. Not present in all devices.

Firmware
Firmware is a piece of software that is located in a
hidden area of the device, handling the interfacing to
the flash.

Flash
Electrically erasable and programmable non-volatile
memory. The difference to ROM is, that this type of
memory can be re-programmed several times.

Flash Block
A flash block is the smallest erasable unit of the flash
memory.

Data Flash Access Library - Type T01, European Release How to Use This Document

R01US0079ED0103 7
User Manual

Abbreviation Full form

Flash Macro
A certain number of Flash blocks are grouped together
in a Flash macro.

ICU Intelligent Cryptographic Unit

Power Save Mode
Device modes to consume less power than during
normal operation. In the device documentation also
called “stand-by modes”

RAM
“Random access memory” - volatile memory with
random access

REE Renesas Electronics Europe GmbH

REL Renesas Electronics Japan

ROM
“Read only memory” - non-volatile memory. The
content of that memory cannot be changed.

All trademarks and registered trademarks are the property of their respective owners.

Data Flash Access Library - Type T01, European Release

R01US0079ED0103 8
User Manual

Table of Contents

Chapter 1 Introduction ... 10

Chapter 2 Architecture ... 11

2.1 Layered Architecture ... 11

2.2 Pool Definitions .. 12

2.3 Architecture related notes ... 12

Chapter 3 Functional Specifications ... 14

3.1 Supported functions, commands and Flash operations 14

3.2 Request-response oriented dialog ... 15

3.3 Background Operation .. 16

3.4 Flash Access Protection ... 17

3.5 Suspend / Resume mechanism .. 18

3.6 Stand-by and Wake-up functionality .. 22

Chapter 4 User Interface (API) ... 24

4.1 Pre-compile configuration ... 24

4.2 Run-time configuration .. 24

4.3 Data types ... 26

4.3.1 Library specific simple type definitions ... 26

4.3.2 r_fdl_descriptor_t .. 26

4.3.3 r_fdl_request_t ... 27

4.3.4 r_fdl_command_t ... 28

4.3.5 r_fdl_accessType_t ... 29

4.3.6 r_fdl_status_t ... 30

4.4 Functions .. 31

4.4.1 Initialization .. 32

4.4.2 Flash Operations ... 33

4.4.3 Operation control ... 37

4.4.4 Administration ... 42

4.5 Commands ... 44

4.5.1 R_FDL_CMD_ERASE ... 45

4.5.2 R_FDL_CMD_WRITE.. 46

4.5.3 R_FDL_CMD_BLANKCHECK .. 48

4.5.4 R_FDL_CMD_READ ... 51

Chapter 5 Library Setup and Usage .. 55

5.1 Obtaining the library .. 55

Data Flash Access Library - Type T01, European Release

R01US0079ED0103 9
User Manual

5.2 File structure .. 55

5.2.1 Overview ... 55

5.2.2 Delivery package directory structure and files 56

5.3 Library resources ... 58

5.3.1 Linker sections .. 58

5.3.2 Stack and Data Buffer .. 58

5.4 MISRA Compliance .. 58

5.5 Sample Application .. 58

5.6 Library configuration ... 59

5.7 Basic Reprogramming Flow .. 59

5.8 R_FDL_Handler calls ... 61

Chapter 6 Cautions ... 62

Data Flash Access Library - Type T01, European Release Introduction

R01US0079ED0103 10
User Manual

Chapter 1 Introduction

This user manual describes the internal structure, the functionality and the application programming
interface (API) of the Renesas RH850 Data Flash Access Library (FDL) Type 01, designed for RH850
flash devices based on a common flash technology.

The libraries are delivered in source code. However it has to be considered carefully to do any changes,
as not intended behaviour and programming faults might be the result.

The Renesas RH850 Data Flash Access Library Type 01 (from here on referred to as FDL) is provided for
the Green Hills, IAR and Renesas compiler environments. The library and application programs are
distributed using an installer tool allowing selecting the appropriate environment.

The libraries are delivered together with device dependent application programs, showing the
implementation of the libraries and the usage of the library functions.

The Data Flash Access library, the latest version of this user manual and other device dependent
information can be downloaded from the following URL:

http://www.renesas.eu/update

Please ensure to always use the latest release of the library in order to take advantage of improvements
and bug fixes.

This manual is based on the assumption that the device will operate in supervisor mode. For information
on other modes, refer to the user's manual for the hardware.

Note:

Please read all chapters of this user manual carefully. Much attention has been put to proper description
of usage conditions and limitations. Anyhow, it can never be completely ensured that all incorrect ways of
integrating the library into the user application are explicitly forbidden. So, please follow the given
sequences and recommendations in this document exactly in order to make full use of the library
functionality and features and in order to avoid malfunctions caused by library misuse.

Flash Infrastructure

Besides the Code Flash, many devices of the RH850 microcontroller family are equipped with a separate
flash area — the Data Flash. This flash area is meant to be used exclusively for data. It cannot be used
for instruction execution (code fetching).

Flash Granularity

The Data Flash of RH850 device is separated into blocks of 64 byte. While erase operations can only be
performed on complete blocks, data writing can be done on a granularity of one word (4 bytes). Reading
from an erased flash word will return random data. The number of available Data Flash blocks varies
between the different RH850 devices. Please refer to the corresponding user's manual for the hardware
for detailed information.

Data Flash is divided into Flash macro

http://www.renesas.eu/update

Data Flash Access Library - Type T01, European Release Architecture

R01US0079ED0103 11
User Manual

Chapter 2 Architecture

This chapter introduces the basic software architecture of the FDL and provides the necessary
background for application designers to understand and effectively use the library. Please read this
chapter carefully before moving on to the details of the API description.

2.1 Layered Architecture

This chapter describes the function of all blocks belonging to the EEPROM Emulation System (EES).
Even though this manual describes the functional block FDL, a short description of all concerned
functional blocks and their relationship can be beneficial for the general understanding.

As depicted in the figure above, the software architecture of the EEPROM Emulation System is built up of
several blocks:

 User Application: This functional block will use functions offered by the FDL and EEL. The user
shall take care that FDL functions are not used at the same time while EEL is operating. Please
refer to EEL documentation for how to stop EEL execution in order to safely access FDL
functions.

 EEPROM Emulation Library (EEL): This functional block offers all functions and commands that
the “User Application” block can use in order to handle its EEPROM data.

 Data Flash Access Library (FDL): The Data Flash Access Library is the subject of this manual.
It should offer an access interface to any user-defined flash area, the so called “FDL-pool”
(described in next chapter). Beside the initialization function, the FDL allows the execution of
access-commands like write/blank check as well as suspend-able erase command.

User Application

EEL

FDL

Data Flash Hardware

Code Flash

Figure 1: Symbolic relationship between the EES functional blocks

Data Flash Access Library - Type T01, European Release Architecture

R01US0079ED0103 12
User Manual

 Data Flash Hardware: This functional block represents the Flash Programming Hardware
controlled by the FDL.

2.2 Pool Definitions

The FDL pool defines the Flash blocks, the user application and a potential EEPROM Emulation (EEL)
may use for FDL Flash access. The limits of the FDL pool are taken into consideration by any of the FDL
Flash access commands. The user can define the size of the FDL pool freely at project run-time during
library initialization.

The FDL pool provides the space for the EEL Pool which is allocated by the EEL inside the FDL pool. The
EEL Pool provides the Flash space for the EEL to store the emulation data and management information.

All FDL pool space not allocated by the EEL Pool is freely usable by the user application, so is called the
User Pool.

2.3 Architecture related notes

 All Data Flash related operations are executed by the FDL. Thus, the application cannot access
(Erase, Write ...) the Data Flash directly. An exception is Reading the Flash contents. As the
Flash is mapped to the CPU address space, it can be directly read by the CPU. The FDL provides
an additional read operation that will take care of possible ECCs (error correction code) errors to
allow error polling.

 The FDL allows accessing the Data Flash only.

Figure 2: Pools overview

User Pool

EEL Pool

User Pool

Data Flash / FDL Pool

FDL Pool

Data Flash Access Library - Type T01, European Release Architecture

R01US0079ED0103 13
User Manual

 Parallel Flash operations (Except Read by the CPU) on Data Flash and Code Flash are not
possible due to shared resources between the Flash macros.

Data Flash Access Library - Type T01, European Release Functional Specifications

R01US0079ED0103 14
User Manual

Chapter 3 Functional Specifications

3.1 Supported functions, commands and Flash operations

For a better understanding of the flows and mechanisms required for an FDL usage, the basic functions
of the FDL are introduced in the following. The API of the FDL is thereby, on the one hand based on
functions used to manage the operation of the library itself, on the other hand it offers so-called
commands to access and control the content of the FDL pool.

The following table lists up all functions, the library will support. Please refer to the chapter 4.4 “Functions”
for detailed descriptions.

Table 1: FDL Function

Function Description

R_FDL_Init Initialize the library and Flash hardware

R_FDL_Execute Initiate a Flash operation

R_FDL_Handler
Control an initiated Flash operation and forward the
status.

R_FDL_SuspendRequest Request suspending an on-going Flash operation

R_FDL_ResumeRequest Resume a suspended Flash operation

R_FDL_StandBy
Suspend an on-going Flash operation from an
asynchronous context

R_FDL_WakeUp Wake-up the FDL from Stand-by state

R_FDL_GetVersionString Return a pointer to the library version string

Commands are used to manage the FDL pool. Commands are initiated via R_FDL_Execute and the

further progress is controlled by regular execution of R_FDL_Handler.

The following commands can be used to execute the following Flash operations:

Table 2: FDL commands and operations

Command
Initiated Flash

operation
Description

R_FDL_CMD_ERASE Flash erase Erase one or more Flash blocks

R_FDL_CMD_WRITE Flash write Write one or more Flash words

R_FDL_CMD_BLANKCHECK Flash blank check
Blank Check one or more Flash words. Return the fail
address in case some Flash word is not blank

R_FDL_CMD_READ Flash data read
Read one or more Flash words to a buffer. Return a
possible ECC (Error correction code) error to the
application together with the address of the error

The following picture shows the basic flow of Flash operations at the example of erasing 2 Flash blocks.
While the Flash hardware can only Erase or Write one unit (Erase 1 block, Write 1 word), the FDL will
manage handling multiple units. Blank Check is executed on word basis but internally it is split in multiple
units at each multiple of 0x4000 bytes boundary.

Data Flash Access Library - Type T01, European Release Functional Specifications

R01US0079ED0103 15
User Manual

3.2 Request-response oriented dialog

The FDL utilizes request-response architecture in order to initiate the commands. This means any
"requester" (any tasks in the user application) has to fill a request structure and pass it by reference to the

Data Flash Access Library using R_FDL_Execute function. The FDL interprets the content of the request

variable, checks its plausibility and initiates the execution. The feedback is reflected immediately to the

requester via the status member (status_enu) of the same request structure. The completion of an

accepted request/command is done by calling R_FDL_Handler periodically as long as the request

remains "busy".

Figure 3: Flash erase sequence

Erase 1 block

R_FDL_Execute (Erase 2 blocks)
Start erase blk 1

R_FDL_BUSY

R_FDL_Handler

R_FDL_BUSY
Check (Busy)

R_FDL_Handler

R_FDL_BUSY
Check (Busy)

R_FDL_Handler

R_FDL_BUSY

Check (Ready)

Start erase blk 2

Erase next block

R_FDL_Handler

R_FDL_BUSY
Check (Busy)

R_FDL_Handler

R_FDL_BUSY
Check (Busy)

R_FDL_Handler

R_FDL_OK
Check (Ready)

...

...

User application FDL

Data Flash

programming

hardware

Data Flash Access Library - Type T01, European Release Functional Specifications

R01US0079ED0103 16
User Manual

Details on the request variable structure and its members are given later in section 4.3.3
“r_fdl_request_t”. Please also note that not all structure members are required for all commands. The
individual command descriptions in section 4.5 “Commands” provide the corresponding detailed
information.

3.3 Background Operation

The flash technology provided by Renesas enables the application to write/erase the Data Flash in
parallel to the CPU execution. In order to satisfy the operation in concurrent or distributed systems, the
command execution is divided into two steps:

1. Initiation of the command execution using R_FDL_Execute

2. Processing of the requested command state by using R_FDL_Handler

This approach comes with one important advantage: Command processing can be done centrally at one
place in the target system (normally the idle-loop or the scheduler loop), while the status of the requests
can be polled locally within the requesting tasks.

Please note that R_FDL_Execute only initiates the command execution and returns immediately with the

request-status "busy" after execution of the first internal state (or an error in case the request cannot be
accepted).

The device flash hardware is responsible for executing the operation in the background. The device
hardware operation might be divided into multiple operations, each performed on a separate occasion,
depending on the number of blocks and data items. The first operation is conducted by calling the

R_FDL_Execute function. The second and subsequent operations are triggered by calling the

R_FDL_Handler function. Thus, there is a need to call the R_FDL_Handler function multiple times.

Processing is suspended from the time each separate operation is completed until the next one is

triggered. Therefore, as the time interval between R_FDL_Handler functions call increases, so does the

overall processing time.

An exception to this background operation is R_FDL_CMD_READ command that is executed

synchronously during R_FDL_Execute function.

Figure 4: Usage of the request structure

Application

bufAddr_u32

idx_u32

cnt_u16

accessType_enu

myRequest

status_enu

FDL

command_enu

Data Flash Access Library - Type T01, European Release Functional Specifications

R01US0079ED0103 17
User Manual

3.4 Flash Access Protection

The FDL Flash Access Protection shall protect Flash accesses to unintended addresses. The protection
distinguishes EEL-Pool Flash blocks from User-Pool blocks (refer to chapter 2.2 “Pool Definitions” for
more information). An access as user application will be allowed to all configured Flash blocks outside
the EEL-Pool, while an access from EEL will be allowed to the EEL-Pool only.

Generally, on any Data Flash operation initiation, the access type must be defined in the operation
request structure variable. Setting this variable enables the access either to the EEL-Pool or to the Data
Flash blocks outside the EEL-Pool (User-Pool). If the variable is not initialized appropriately or if the
wrong pool shall be accessed, a protection error is returned.

Figure 5: Background operation

User application FDL

Data Flash

programming

hardware

R_FDL_Execute (Command*)

Start Flash operation
R_FDL_BUSY

R_FDL_Handler ()

R_FDL_BUSY

R_FDL_Handler ()

R_FDL_BUSY

Status check

Operation is ongoing

Status check

Operation is finished

Start Flash operation

Operation started

Status check

Operation is finished

R_FDL_Handler ()

R_FDL_OK

Other operations
may follow

Library is busy with a
Flash operation

* Possible asynchronous commands:

 R_FDL_CMD_ERASE

 R_FDL_CMD_WRITE

 R_FDL_CMD_BLANKCHECK

Data Flash Access Library - Type T01, European Release Functional Specifications

R01US0079ED0103 18
User Manual

3.5 Suspend / Resume mechanism

Some Data Flash operations can last a long time especially multiple erase and write. The user application
cannot always wait for the operation end because other operations have higher priority. So, from user
point of view current operation is suspend-able and can be resumed after finishing the other Flash
accesses.

From software point of view an on-going operation always ends in suspended state unless the resume is
requested beforehand. In case the Flash hardware has already finished an operation but its end result
has not already been processed by the library, the library returns the suspended status. The final
operation result is returned after successful resume request.

The FDL contains special functions to suspend and resume an ongoing operation. Please refer to chapter
4.4.3.1 “R_FDL_SuspendRequest”.

Examples of Erase or Write Suspend-Resume flow:

Figure 6: Flash Access Rights

User Pool

EEL Pool

User Pool

Data Flash / FDL Pool

User Application

EEL

Data Flash Access Library - Type T01, European Release Functional Specifications

R01US0079ED0103 19
User Manual

Figure 7: Erase/Write Suspend Resume Flow

Erase 1 block
Or

Write 1 word

R_FDL_Execute (Erase/Write)
Start unit 1

R_FDL_BUSY

R_FDL_Handler

R_FDL_BUSY
Check (Busy)

...

User application FDL

Data Flash

programming

hardware

Erase or Write next
unit (resumed)

Suspended

Idle

R_FDL_SuspendRequest

R_FDL_OK

R_FDL_Handler

R_FDL_BUSY
Suspend

R_FDL_Handler

R_FDL_SUSPENDED
Check (Suspended)

R_FDL_ResumeRequest

R_FDL_OK

R_FDL_Handler

R_FDL_BUSY
Resume

R_FDL_Handler

R_FDL_BUSY
Check (Busy)

R_FDL_Handler

R_FDL_OK
Check (Ready)

...

...

Data Flash Access Library - Type T01, European Release Functional Specifications

R01US0079ED0103 20
User Manual

Blankcheck operation will not be interrupted by a suspend request unless the operation reaches a Flash
Macro boundary (any multiple of 0x4000 bytes) or it will be finished:

Figure 8: Erase/Write Suspend + Immediate Resume

Erase 1 block
Or

Write 1 word

R_FDL_Execute (Erase or Write)
Start unit 1

R_FDL_BUSY

R_FDL_Handler

R_FDL_BUSY
Check (Busy)

...

User application FDL

Data Flash

programming

hardware

Idle

R_FDL_SuspendRequest

R_FDL_OK

R_FDL_ResumeRequest

R_FDL_OK

R_FDL_Handler

R_FDL_BUSY
Check (Busy)

R_FDL_Handler

R_FDL_OK
Check (Ready)

...

Data Flash Access Library - Type T01, European Release Functional Specifications

R01US0079ED0103 21
User Manual

Notes:

When Erase processing is suspended and resumed, this is not considered as an additional erase with
respect to the specified Flash erase endurance.

The suspend / resume mechanism cannot be nested. Therefore, the following sequence is not allowed:
Erase Flash ► Suspend ► Start another erase flash ► Suspend.

Figure 9: Suspend/Resume a Blankcheck operation

Blank Check

0x3000 to 0x3FFF

R_FDL_Execute

(Blank Check 0x3000 to 0x4FFF)

Start Blankcheck
R_FDL_BUSY

R_FDL_Handler

R_FDL_BUSY
Check (Busy)

...

User application FDL

Data Flash

programming

hardware

R_FDL_SuspendRequest

R_FDL_OK

R_FDL_ResumeRequest

R_FDL_OK

R_FDL_Handler

R_FDL_BUSY
Check (Busy)

R_FDL_Handler

R_FDL_SUSPENDED
Check (Ready)

...

R_FDL_Handler

R_FDL_OK / _ERR_BLANKCHECK

Blank Check

0x4000 to 0x4FFF

Start Blankcheck

R_FDL_Handler

R_FDL_BUSY
Check (Busy)

...

Idle

R_FDL_SuspendRequest

R_FDL_OK

R_FDL_ResumeRequest

R_FDL_OK

R_FDL_Handler

R_FDL_BUSY
Check (Busy)

...

R_FDL_Handler

R_FDL_OK / _ERR_BLANKCHECK

Suspended

R_FDL_Handler

R_FDL_SUSPENDED
Check (Ready)

Suspended

Data Flash Access Library - Type T01, European Release Functional Specifications

R01US0079ED0103 22
User Manual

3.6 Stand-by and Wake-up functionality

Entering a device power save (stand-by) mode is not allowed, when a Data Flash operation is on-going.
Due to that, especially Data Flash Erase operation can delay entering a power save mode significantly. In

order to allow fast entering of such mode, the functions R_FDL_StandBy and R_FDL_WakeUp have been

introduced. The main functionality of the functions is to suspend a possibly on-going Data Flash Erase or

Write operation (R_FDL_StandBy) and resume it after waking up from power save mode

(R_FDL_WakeUp).

Once started, stand-by processing must always end in stand-by status. Calling the R_FDL_StandBy

does not necessarily immediately suspend any Data Flash operation, as suspend might be delayed by the
device internal hardware or might not be supported at all (only Erase and Write are suspend-able). In this

case, the R_FDL_StandBy function must be called repeatedly until the stand-by status is reached.

Blank Check and Read Data Flash operations are suspendable from software point of view, but the library
will wait for the operation to be finished by hardware while suspend is processed and the result will be
presented after resuming. This wait however is not that important because blank check and read
operations are much faster than erase or write.

In case the FDL is in an idle state (no on-going Data Flash operations), by calling the R_FDL_StandBy

the FDL will immediately enter the Stand-By state. By calling the R_FDL_WakeUp, the FDL will return to

previous state (in this case the idle state).

The following pictures describe the library behaviour in case a stand-by request is issued during FDL
operation:

Figure 10: Stand-By processing on a Data Flash Erase operation

Erase

First block

R_FDL_Execute (Erase 2 blocks)
Start erase block

R_FDL_BUSY

R_FDL_Handler

R_FDL_BUSY
Check (Busy)

…………………………………………………………

User

application
FDL

Data Flash

programming

hardware

Erase

Block 2

StandBy

state

Idle

R_FDL_StandBy

R_FDL_OK
Suspend

R_FDL_WakeUp

R_FDL_OK

Start erasing

interrupted block

R_FDL_Handler

R_FDL_BUSY
Check (Busy)

R_FDL_Handler

R_FDL_OK
Check (Ready)

…………………………………………………………

…………………………………………………………

Erase

Second block

R_FDL_Handler
Start erase block

R_FDL_BUSY

R_FDL_Handler

R_FDL_BUSY
Check (Busy)

Erase

second block

interrupted

Data Flash Access Library - Type T01, European Release Functional Specifications

R01US0079ED0103 23
User Manual

Figure 11: Stand-By processing on a Data Flash Write operation

Write

first word

R_FDL_Execute (Write 3 words)
Start Write byte

R_FDL_BUSY

R_FDL_Handler

R_FDL_BUSY
Check (Busy)

…………………………………………………………

User

application
FDL

Write

third word

StandBy

state

Idle

R_FDL_StandBy

R_FDL_BUSY
Suspend

R_FDL_WakeUp

R_FDL_OK

Continue the write

operation

R_FDL_Handler

R_FDL_BUSY
Check (Busy)

R_FDL_Handler

R_FDL_OK
Check (Ready)

…………………………………………………………

…………………………………………………………

Write

second word

R_FDL_Handler
Start Write byte

R_FDL_BUSY

Data Flash

programming

hardware

R_FDL_OK
Suspend

R_FDL_StandBy

Data Flash Access Library - Type T01, European Release User Interface (API)

R01US0079ED0103 24
User Manual

Chapter 4 User Interface (API)

This chapter provides the formal description of the application programming interface of the Flash Data
Library Type T01 (FDL). It is strongly advised to read and understand the previous chapters presenting
the concepts and structures of the library before continuing with the API details.

4.1 Pre-compile configuration

The pre-compile configuration has a direct impact on the object file generated by the compiler. Hence it is
used for conditional compilation (e.g. solve device dependencies of the code).

The configuration is done in the module fdl_cfg.h. The user has to configure all parameters and

attributes by adapting the related constant definitions in that header-file.

The following configuration options are available:

1. Critical section

One configuration element is the critical section handling of the library. The function R_FDL_Init

needs to activate the device internal special memory for a short time in order to have access to
certain data. This results in disabling the Code Flash. During that time, code from Code Flash cannot
be executed as well as data cannot be read. The library provides the possibility to execute call-back
routines in order for the user to handle the implications of disabling the Code flash (for the impact on
the application, please refer to Chapter 6 Cautions). The call-back routines are executed at the begin
and end of the critical section. The defines to set the call back routines are described in the following:

FDL_CRITICAL_SECTION_BEGIN: Possibility to execute a call back routine at critical section start

(e.g. disable interrupts and exceptions)

FDL_CRITICAL_SECTION_END: Possibility to execute a call back routine at critical section end (e.g.

enable interrupts and exceptions)

Implementation in the sample application:

#define FDL_CRITICAL_SECTION_BEGIN FDL_User_CriticalSetionBegin();

#define FDL_CRITICAL_SECTION_END FDL_User_CriticalSetionEnd();

 Device family 2.

The macro FDL_CFG_E1X_P1X_PLATFORM must be defined for E1x and P1x and must be left

undefined for F1x and R1x devices.

4.2 Run-time configuration

The FDL configuration can be changed dynamically at runtime. It contains important FDL related
information (e.g. CPU frequency, number of blocks used by library, authentication code) and EEL
information (e.g. EEL pool size and EEL starting block number).

The run-time configuration is stored in a descriptor structure (see r_fdl_descriptor_t), which is

declared in r_fdl_types.h, but defined in the user application and passed to the library by the function

R_FDL_Init.

The file fdl_descriptor.c shall show an example of the descriptor structure definition and filling, while

the fdl_descriptor.h shall show an example of the definitions required to fill in the structure.

In fact, the file fdl_descriptor.h might be modified according to the user applications needs and

might be added to the user application project together with the fdl_descriptor.c. The descriptor files

(.c and .h) are part of the library installation package.

Data Flash Access Library - Type T01, European Release User Interface (API)

R01US0079ED0103 25
User Manual

The following settings should be configured by user:

1. AUTHENTICATION_ID: A 16 byte access ID code.

The ID code is used to secure access to:

1. On Chip Debug unit

2. Serial programming

3. Self-programming only on older F1x devices. Newer devices will simply ignore a wrong ID
code so self-programming feature is always available.

On older devices where ID code is still checked, a wrong code will not result in a failed

initialization but FDL commands will fail to operate with a R_FDL_ERR_PROTECTION error

status.

2. CPU_FREQUENCY_MHZ: This defines the internal CPU frequency in MHz unit, rounded up to

the nearest integer, e.g. for 24.3 MHz set CPU_FREQUENCY_MHZ to 25. Please check the Device

Manual for limit values

3. FDL_POOL_SIZE: It defines the number of blocks to be accessed by the FDL for user access
and EEL access. Usually it is set to the total number of blocks physically available on the device.
For example, if the device is equipped with 32 KB of Data Flash and the block size is 64 bytes,
then FDL_POOL_SIZE can be any value up to 512

4. EEL_POOL_START: It defines the starting block of the EEL-Pool. If FDL is used without EEL on
top, the value should be set to 0

5. EEL_POOL_SIZE: It defines the number of blocks used for the EEL-Pool. If FDL is used without
EEL on top, the value should be set to 0

FDL block size is always equal to the physical block size of Data Flash.

Example of descriptor when FDL is used alone:

/* default access code */

#define AUTHENTICATION_ID { 0xFFFFFFFF, \

 0xFFFFFFFF, \

 0xFFFFFFFF, \

 0xFFFFFFFF }

#define CPU_FREQUENCY_MHZ (80)

/* FDL pool will use 512 blocks * 64 bytes = 32KB, no EEL pool */

#define FDL_POOL_SIZE (512)

#define EEL_POOL_START (0)

#define EEL_POOL_SIZE (0)

Example of descriptor when EEL is used:

/* default access code */

#define AUTHENTICATION_ID { 0xFFFFFFFF, \

 0xFFFFFFFF, \

 0xFFFFFFFF, \

 0xFFFFFFFF }

#define CPU_FREQUENCY_MHZ (80)

/* FDL pool will use 32KB, EEL pool occupies fist 16 KB */

#define FDL_POOL_SIZE (512)

#define EEL_POOL_START (0)

#define EEL_POOL_SIZE (256)

EEL may be configured to use virtual blocks. A virtual block size is an integer multiple of physical block
size and it is aligned to physical blocks. Please consult EEL documentation for details.

Example of descriptor when EEL is used with virtual block size 32 times the size of physical block size:

Data Flash Access Library - Type T01, European Release User Interface (API)

R01US0079ED0103 26
User Manual

/* default access code */

#define AUTHENTICATION_ID { 0xFFFFFFFF, \

 0xFFFFFFFF, \

 0xFFFFFFFF, \

 0xFFFFFFFF }

#define CPU_FREQUENCY_MHZ (80)

#define FDL_POOL_SIZE (512)

/* FDL pool will use 32KB, from wich EEL pool occupies area:

START: 1 * 32 * 64 = 2048 till

END: 6 * 32 * 64 + 2048 = 14335 */

#define EEL_VIRTUALBLOCKSIZE (32u)

#define EEL_POOL_START (1u * EEL_VIRTUALBLOCKSIZE)

#define EEL_POOL_SIZE (6u * EEL_VIRTUALBLOCKSIZE)

4.3 Data types

This section describes all data definitions used and offered by the FDL. In order to reduce the probability
of type mismatches in the user application, please make strict usage of the provided types.

4.3.1 Library specific simple type definitions

Type
definition:

typedef signed char int8_t;

typedef unsigned char uint8_t;

typedef signed short int16_t;

typedef unsigned short uint16_t;

typedef signed long int32_t;

typedef unsigned long uint32_t;

typedef unsigned char rBool;

Description: These simple types are used throughout the complete library API. All library specific

simple type definitions can be found in file r_typedefs.h, which is part of the library

installation package.

4.3.2 r_fdl_descriptor_t

Type
definition:

typedef struct R_FDL_DESCRIPTOR_T

{

 uint32_t id_au32[4];

 uint16_t cpuFrequencyMHz_u16;

 uint16_t fdlPoolSize_u16;

 uint16_t eelPoolStart_u16;

 uint16_t eelPoolSize_u16;

} r_fdl_descriptor_t;

Data Flash Access Library - Type T01, European Release User Interface (API)

R01US0079ED0103 27
User Manual

Description: This type is the run-time configuration (see chapter 4.2 “Run-time configuration”). A
variable of this type is read during initialization phase then hardware and internal
variables are set according to the configuration.

Member /
Value:

 Member / Value Description

id_au32[4] Authentication ID array code

cpuFrequencyMHz_u16 CPU frequency in MHz

fdlPoolSize_u16 FDL pool size in number of blocks

eelPoolStart_u16 Number of first block of the EEL pool

eelPoolSize_u16 Last block of the EEL pool

4.3.3 r_fdl_request_t

Type
definition:

typedef volatile struct R_FDL_REQUEST_T

{

 r_fdl_command_t command_enu;

 uint32_t bufAddr_u32;

 uint32_t idx_u32;

 uint16_t cnt_u16;

 r_fdl_accessType_t accessType_enu;

 r_fdl_status_t status_enu;

} r_fdl_request_t;

Description: This structure is the central type for the request-response-oriented dialog for the
command execution (see section 3.2 “Request-response oriented dialog”). Not every
element of this structure is required for each command. However, all members of the
request variable must be initialized once before usage. Please refer to section 4.5
“Commands” for a more detailed description of the structure elements command-specific
usage.

For simplification, idx_u32 structure member is a virtual address that starts at 0x0 and

not at the address at which Data Flash is mentioned in the hardware user manual.

Data Flash Access Library - Type T01, European Release User Interface (API)

R01US0079ED0103 28
User Manual

Member /
Value:

 Member / Value Description

command_enu

User command to execute:

 R_FDL_CMD_ERASE

 R_FDL_CMD_WRITE

 R_FDL_CMD_BLANKCHECK

 R_FDL_CMD_READ

bufAddr_u32
Source/Destination buffer address for Write/Read
operations

idx_u32

Bidirectional:

 start block number when starting block based
commands (erase) or

 start word address when starting address based
commands (write, blank check, read) or

 failure address in case of blank check or ECC read
commands

cnt_u16
Number of blocks (64 bytes) to operate in case of erase
command. Number of words (4 bytes) to operate for all
the other commands.

accessType_enu

Data Flash access originator:

 R_FDL_ACCESS_USER or

 R_FDL_ACCESS_EEL

status_enu
Status/Error codes returned by the library, see 4.3.6
"r_fdl_status_t"

4.3.4 r_fdl_command_t

Type
definition:

typedef enum R_FDL_COMMAND_T

{

 R_FDL_CMD_ERASE,

 R_FDL_CMD_WRITE,

 R_FDL_CMD_BLANKCHECK,

 R_FDL_CMD_READ

} r_fdl_command_t;

Description: User command to execute. This type is used within the structure r_fdl_request_t

(see section 4.3.3 "r_fdl_request_t") in order to specify which command shall be executed

via the function R_FDL_Execute. A detailed description of each command can be found

in section 4.5 “Commands”.

Data Flash Access Library - Type T01, European Release User Interface (API)

R01US0079ED0103 29
User Manual

Member /
Value:

 Member / Value Description

R_FDL_CMD_ERASE Erase Data Flash block(s)

R_FDL_CMD_WRITE Write Data Flash word(s)

R_FDL_CMD_BLANKCHECK Blank check certain Data Flash area

R_FDL_CMD_READ
Read from Data Flash and return data and possible
ECC errors

4.3.5 r_fdl_accessType_t

Type
definition:

typedef enum R_FDL_ACCESS_TYPE_T

{

 R_FDL_ACCESS_NONE,

 R_FDL_ACCESS_USER,

 R_FDL_ACCESS_EEL

} r_fdl_accessType_t;

Description: In order to initiate a Data Flash operation, the access type to the Data Flash must be set
depending on the configured pool that will be accessed. The pool ranges are defined in

the FDL descriptor, passed to the R_FDL_Init function (please check Figure 6: “Flash

Access Rights”).

After each operation the access right is reset to R_FDL_ACCESS_NONE to prevent

accidental access.

Member /
Value:

 Member / Value Description

R_FDL_ACCESS_NONE FDL internal value. Not used by the application

R_FDL_ACCESS_USER
Application wants to execute an FDL operation in the
User-pool Data Flash area

R_FDL_ACCESS_EEL
Application wants to execute an FDL operation in the
EEL-pool Data Flash area

Data Flash Access Library - Type T01, European Release User Interface (API)

R01US0079ED0103 30
User Manual

4.3.6 r_fdl_status_t

Type
definition:

typedef enum R_FDL_STATUS_T

{

 R_FDL_OK,

 R_FDL_BUSY,

 R_FDL_SUSPENDED,

 R_FDL_ERR_CONFIGURATION,

 R_FDL_ERR_PARAMETER,

 R_FDL_ERR_PROTECTION,

 R_FDL_ERR_REJECTED,

 R_FDL_ERR_WRITE,

 R_FDL_ERR_ERASE,

 R_FDL_ERR_BLANKCHECK,

 R_FDL_ERR_COMMAND,

 R_FDL_ERR_ECC_SED,

 R_FDL_ERR_ECC_DED,

 R_FDL_ERR_INTERNAL

} r_fdl_status_t;

Description: This enumeration type defines all possible status and error-codes that can be generated
by the FDL. Some error codes are command specific and are described in detail in
section 4.5 “Commands”.

Data Flash Access Library - Type T01, European Release User Interface (API)

R01US0079ED0103 31
User Manual

Member /
Value:

 Member / Value Description

R_FDL_OK FDL operation successfully finished

R_FDL_BUSY FDL operation is still ongoing

R_FDL_SUSPENDED Data Flash operation is suspended

R_FDL_ERR_CONFIGURATION The FDL configuration (descriptor) was wrong

R_FDL_ERR_PARAMETER An error was found in the given parameter(s)

R_FDL_ERR_PROTECTION FDL operation stopped due to hardware error, wrong
access rights or wrong conditions

R_FDL_ERR_REJECTED A flow error occurred (e.g. library not initialized, other

operation on-going)

R_FDL_ERR_WRITE Data Flash write error

R_FDL_ERR_ERASE Data Flash erase error

R_FDL_ERR_BLANKCHECK The blank check command was stopped because the
specified area is not blank

R_FDL_ERR_COMMAND Unknown command

R_FDL_ERR_ECC_SED Single bit error detected by ECC

R_FDL_ERR_ECC_DED Double bit error detected by ECC

R_FDL_ERR_INTERNAL The current FDL command stopped due to an library
internal error (e.g. hardware errors that should never
occur or library errors which were not expected and
might result from library data manipulation by the
application)

4.4 Functions

The API functions, grouped by their role in the interface:

Initialization:

 R_FDL_Init

Flash Operations:

 R_FDL_Execute

 R_FDL_Handler

Operation control:

 R_FDL_SuspendRequest

 R_FDL_ResumeRequest

 R_FDL_StandBy

 R_FDL_WakeUp

Data Flash Access Library - Type T01, European Release User Interface (API)

R01US0079ED0103 32
User Manual

Administration:

 R_FDL_GetVersionString

The following sub-chapters describe the Flash operations that can be initiated and controlled by the

library. The operations are initiated by a library function R_FDL_Execute and later on controlled by the

library function R_FDL_Handler.

All FDL interface functions are prototyped in the header file r_fdl.h.

4.4.1 Initialization

4.4.1.1 R_FDL_Init

Outline: Initialization of the Data Flash Access Library.

Interface: C Interface

r_fdl_status_t R_FDL_Init (const r_fdl_descriptor_t * descriptor_pstr);

Arguments: Parameters

 Argument Type Access Description

descriptor_pstr r_fdl_descriptor_t * R
FDL configuration descriptor (see
section 4.3.2 “r_fdl_request_t”)

 Return value

 Type Description

r_fdl_status_t

 R_FDL_OK

Operation finished successfully.

 R_FDL_ERR_CONFIGURATION

Wrong parameters have been passed to the FDL:

 Descriptor address is NULL

 FDL-pool is zero

 EEL-pool ends beyond FDL-pool edge

 Specified CPU clock is outside limits for this device

 R_FDL_ERR_INTERNAL

Initialization failed due to various factors (insufficient stack
space, unknown hardware or software issues)

Pre-
conditions:

Interrupt execution shall be disabled for a brief time during execution of this function. This
must either be done in advance by the user, or the user must properly configure provided

callback macro functions in fdl_cfg.h (see description and example below).

Post-
conditions:

None

Data Flash Access Library - Type T01, European Release User Interface (API)

R01US0079ED0103 33
User Manual

Description: This function is executed before any execution of FDL Flash operation.

Function checks the input parameters and initializes the hardware and software.

Note:

This function will temporarily disable Code Flash. Please refer to Chapter 6
Cautions for limitations that must be considered.

Example:

const r_fdl_descriptor_t sampleApp_fdlConfig_enu =

{

 AUTHENTICATION_ID,

 CPU_FREQUENCY_MHZ,

 FDL_POOL_SIZE,

 EEL_POOL_START,

 EEL_POOL_SIZE

};

r_fdl_status_t ret;

ret = R_FDL_Init (&sampleApp_fdlConfig_enu);

if (ret != R_FDL_OK)

{

 /* Error handler */

}

Example: for setting the protected section with callbacks provided in the sample application

#define FDL_CRITICAL_SECTION_BEGIN FDL_User_CriticalSetionBegin();

#define FDL_CRITICAL_SECTION_END FDL_User_CriticalSetionEnd();

4.4.2 Flash Operations

4.4.2.1 R_FDL_Execute

Outline: Initiate a Data Flash operation.

Interface: C Interface

void R_FDL_Execute (r_fdl_request_t * request_pstr);

Arguments: Parameters

 Argument Type Access Description

request_pstr r_fdl_request_t * RW

This argument points to a
request structure defining the
command, command parameters
and also the execution results.

A more detailed description of
request structure can be found in
section 4.3.3 “r_fdl_request_t”.

Data Flash Access Library - Type T01, European Release User Interface (API)

R01US0079ED0103 34
User Manual

 Return value

 Type Description

none

Pre-
conditions:

R_FDL_Init must have been executed successfully.

Post-
conditions:

Call R_FDL_Handler until the Flash operation is finished. This is reported by the request

structure status return value (value changes from R_FDL_BUSY to a different value).

The user application must not modify members of the request structure while the
command is in operation.

Description: The execute function initiates all Flash modification operations. The operation type and
operation parameters are passed to the FDL by a request structure, the status and the
result of the operation are returned to the user application also by the same structure.
The required parameters as well as the possible return values depend on the operation to
be started.

This function only starts a hardware operation according to the command to be executed.
The command processing must be controlled and stepped forward by the handler

function R_FDL_Handler.

Possible commands, parameters and return values are described into chapter 4.5
“Commands“.

Example: Erase blocks 0 to 3.

r_fdl_request_t myRequest;

myRequest.command_enu = R_FDL_CMD_ERASE;

myRequest.idx_u32 = 0;

myRequest.cnt_u16 = 4;

myRequest.accessType_enu = R_FDL_ACCESS_USER;

R_FDL_Execute (&myRequest);

while (myRequest.status_enu == R_FDL_BUSY)

{

 R_FDL_Handler ();

}

if (myRequest.status_enu != R_FDL_OK)

{

 /* Error handler */

}

Example: Write 8 bytes starting from addresses 0x10.

r_fdl_request_t myRequest;

uint32_t data[] = { 0x11223344, 0x55667788 };

myRequest.command_enu = R_FDL_CMD_WRITE;

myRequest.idx_u32 = 0x10;

myRequest.cnt_u16 = 2;

myRequest.bufAddr_u32 = (uint32_t)&data[0];

myRequest.accessType_enu = R_FDL_ACCESS_USER;

R_FDL_Execute (&myRequest);

while (myRequest.status_enu == R_FDL_BUSY)

Data Flash Access Library - Type T01, European Release User Interface (API)

R01US0079ED0103 35
User Manual

{

 R_FDL_Handler ();

}

if (myRequest.status_enu != R_FDL_OK)

{

 /* Error handler */

}

Example: Blank Check addresses from 0x10 to 0x17.

r_fdl_request_t myRequest;

myRequest.command_enu = R_FDL_CMD_BLANKCHECK;

myRequest.idx_u32 = 0x10;

myRequest.cnt_u16 = 2;

myRequest.accessType_enu = R_FDL_ACCESS_USER;

R_FDL_Execute(&myRequest);

while (myRequest.status_enu == R_FDL_BUSY)

{

 R_FDL_Handler();

}

if (myRequest.status_enu != R_FDL_OK)

{

 /* Error handler */

}

Example: Read two words starting from address 0x10.

r_fdl_request_t myRequest;

uint32_t data[2];

myRequest.command_enu = R_FDL_CMD_READ;

myRequest.idx_u32 = 0x10;

myRequest.cnt_u16 = 2;

myRequest.bufAddr_u32 = (uint32_t)&data[0];

myRequest.accessType_enu = R_FDL_ACCESS_USER;

R_FDL_Execute(&myRequest);

if (myRequest.status_enu != R_FDL_OK)

{

 /* Error handler */

}

Data Flash Access Library - Type T01, European Release User Interface (API)

R01US0079ED0103 36
User Manual

4.4.2.2 R_FDL_Handler

Outline: This function needs to be called repeatedly in order to drive pending commands and
observe their progress.

Interface: C Interface

void R_FDL_Handler (void);

Arguments: Parameters

 Argument Type Access Description

None

 Return value

 Type Description

None

Pre-
conditions:

R_FDL_Init and R_FDL_Execute must have been executed successfully.

Post-
conditions:

The status of a pending FDL command may be updated, i.e. the status_enu member of

the corresponding request structure is written.

Description: The function needs to be called regularly in order to drive pending commands and
observe their progress. Thereby, the command execution is performed state by state.
When a command execution is finished, the request status variable (structural element

status_enu of r_fdl_request_t) is updated with the status/error code of the

corresponding command execution.

Note:

When no command is being processed, R_FDL_Handler consumes few CPU cycles.

Example:

while (true)

{

 R_FDL_Handler();

 User_Task_A();

 User_Task_B();

 User_Task_C();

 User_Task_D();

}

Data Flash Access Library - Type T01, European Release User Interface (API)

R01US0079ED0103 37
User Manual

4.4.3 Operation control

4.4.3.1 R_FDL_SuspendRequest

Outline: This function requests suspending a Flash operation in order to be able to do other Flash
operations.

Interface: C Interface

r_fdl_status_t R_FDL_SuspendRequest (void);

Arguments: Parameters

 Argument Type Access Description

None

 Return value

 Type Description

r_fdl_status_t

 R_FDL_OK

Operation finished successfully

 R_FDL_ERR_REJECTED

Wrong library handling flow:

 No operation is ongoing

 FDL is already in suspended state

Pre-
conditions:

A Flash operation must have been started and not yet finished (request structure status

value is R_FDL_BUSY). The FDL must not be processing another suspend request.

Post-
conditions:

Call R_FDL_Handler until the library is suspended (status R_FDL_SUSPENDED)

If the function returned successfully, no further error check of the suspend procedure is

necessary, as a potential error is saved and restored on R_FDL_ResumeRequest.

The request structure used before suspend shall not be modified by the command(s)
issued during suspended state.

Description: This function requests suspending a Flash operation in order to be able to do other Flash
operations.

Example:

r_fdl_status_t srRes_enu;

r_fdl_request_t myReq_str_str;

uint32_t i;

/* Start Erase operation */

myReq_str_str.command_enu = R_FDL_CMD_ERASE;

myReq_str_str.idx_u32 = 0;

myReq_str_str.cnt_u16 = 4;

myReq_str_str.accessType_enu = R_FDL_ACCESS_USER;

R_FDL_Execute (&myReq_str_str);

Data Flash Access Library - Type T01, European Release User Interface (API)

R01US0079ED0103 38
User Manual

/* Now call the handler some times */

i = 0;

while ((myReq_str_str.status_enu == R_FDL_BUSY) && (i < 10))

{

 R_FDL_Handler ();

 i++;

}

/* Suspend request and wait until suspended */

srRes_enu = R_FDL_SuspendRequest ();

if (R_FDL_OK != srRes_enu)

{

 /* error handler */

 while (1)

 ;

}

while (R_FDL_SUSPENDED != myReq_str_str.status_enu)

{

 R_FDL_Handler ();

}

/* Now the FDL is suspended and we can handle other operations or read the Data

Flash ... */

/* Erase resume */

srRes_enu = R_FDL_ResumeRequest();

if (R_FDL_OK != srRes_enu)

{

 /* Error handler */

}

/* Finish the erase */

while (myReq_str_str.status_enu == R_FDL_SUSPENDED)

{

 R_FDL_Handler();

}

while (myReq_str_str.status_enu == R_FDL_BUSY)

{

 R_FDL_Handler();

}

if (R_FDL_OK != myReq_str_str.status_enu)

{

 /* Error handler */

}

4.4.3.2 R_FDL_ResumeRequest

Outline: This function requests to resume the FDL operation after suspending.

Interface: C Interface

r_fdl_status_t R_FDL_ResumeRequest (void);

Data Flash Access Library - Type T01, European Release User Interface (API)

R01US0079ED0103 39
User Manual

Arguments: Parameters

 Argument Type Access Description

None

 Return value

 Type Description

r_fdl_status_t

 R_FDL_OK

Operation finished successfully

 R_FDL_ ERR_REJECTED

Wrong library handling flow: FDL is not in
suspended or suspend pending state

Pre-
conditions:

The library must be in suspended state.

Post-
conditions:

Call R_FDL_Handler until the library operation is resumed.

Description: This function requests to resume the FDL operation after suspending. The resume is just

requested by this function. Resume handling is done by the R_FDL_Handler function.

Example: See R_FDL_SuspendRequest.

4.4.3.3 R_FDL_StandBy

Outline: This function suspends an ongoing flash operation.

Interface: C Interface

r_fdl_status_t R_FDL_StandBy (void);

Arguments: Parameters

 Argument Type Access Description

None

Data Flash Access Library - Type T01, European Release User Interface (API)

R01US0079ED0103 40
User Manual

 Return value

 Type Description

r_fdl_status_t

 R_FDL_OK

FDL operation finished successfully

 R_FDL_BUSY

The started Flash operation is still on-going

 R_FDL_ ERR_REJECTED

Flow error:

 Library is not initialized

 Library is already in stand-by mode

Pre-
conditions:

R_FDL_Init must have been executed successfully.

FDL is not in stand-by mode.

Post-
conditions:

Repeat the execution of the R_FDL_StandBy function until the state indicated by the

function changes from R_FDL_BUSY.

Do not execute functions R_FDL_Execute, R_FDL_SuspendRequest,

R_FDL_ResumeRequest or R_FDL_StandBy when FDL is in stand-by state.

Description: This function suspends an ongoing flash operation and brings FDL into stand-by state.
The system can then change to special states (e.g. change power mode).

Function does not necessarily immediately suspend any Flash operation, as suspend
might be delayed by the device internal hardware or might not be supported at all (only

Erase and Write are suspendable). So, the function R_FDL_StandBy tries to suspend

the Flash operation and returns R_FDL_BUSY as long as a Flash operation is on-going. If

suspend was not possible (e.g. blank check operation), R_FDL_BUSY is returned until the

operation is finished normally.

So, in order to be sure to have no Flash operation on-going, the function must be called

continuously until the function does no longer return R_FDL_BUSY or until a timeout

occurred.

After stand-by, it is mandatory to call R_FDL_WakeUp to resume normal FDL operation

again. The prescribed sequence in case of using R_FDL_StandBy/R_FDL_WakeUp is:

 any FDL command is in operation

 call R_FDL_StandBy until it does no longer return R_FDL_BUSY

 put device in power save (stand-by) mode

 device wake-up

 call R_FDL_WakeUp

 continue with initial FDL command

Note:

Please consider not entering a power save mode (e.g. Deep Stop mode) which
resets the Flash hardware, alter stack or library variables, because a resume of the
previous operation is not possible afterwards. The library is not able to detect this
failure.

Example:

r_fdl_status_t fdlRet_enu;

r_fdl_request_t myReq_str_str;

Data Flash Access Library - Type T01, European Release User Interface (API)

R01US0079ED0103 41
User Manual

/* Start Erase operation */

myReq_str_str.command_enu = R_FDL_CMD_ERASE;

myReq_str_str.idx_u32 = 0;

myReq_str_str.cnt_u16 = 4;

myReq_str_str.accessType_enu = R_FDL_ACCESS_USER;

R_FDL_Execute (&myReq_str_str);

...

do

{

 fdlRet = R_FDL_StandBy ();

}

while (R_FDL_BUSY == fdlRet);

if (R_FDL_OK != fdlRet)

{

 /* error handler */

}

...

/* device enters power save mode */

...

...

/* device recovers from power save mode */

...

fdlRet = R_FDL_WakeUp ();

if (R_FDL_OK != fdlRet)

{

 /* error handler */

}

/* Finish erase command */

while (myReq_str_str.status_enu == R_FDL_BUSY)

{

 R_FDL_Handler ();

}

if (R_FDL_OK != myReq_str_str.status_enu)

{

 /* Error handler */

 while (1)

 ;

}

4.4.3.4 R_FDL_WakeUp

Outline: This function wakes-up the library from Stand-by.

Interface: C Interface

r_fdl_status_t R_FDL_WakeUp (void);

Data Flash Access Library - Type T01, European Release User Interface (API)

R01US0079ED0103 42
User Manual

Arguments: Parameters

 Argument Type Access Description

None

 Return value

 Type Description

r_fdl_status_t

 R_FDL_OK

Operation finished successfully

 R_FDL_ ERR_REJECTED

Wrong library handling flow: FDL is not in stand-
by state

Pre-
conditions:

The library must be in stand-by mode.

The hardware conditions (CPU frequency, voltage, etc...) must be restored to the state
before issuing the stand-by request.

Post-
conditions:

None

Description: The main purpose of this function is to wake-up the library from the stand-by mode and
resume Flash hardware. For more information see chapter 3.6 “Stand-by and Wake-up
functionality”.

Example: See R_FDL_StandBy.

4.4.4 Administration

4.4.4.1 R_FDL_GetVersionString

Outline: This function returns the pointer to the null terminated library version string.

Interface: C Interface

(const uint8_t*) R_FDL_GetVersionString (void);

Arguments: Parameters

 Argument Type Access Description

None

Data Flash Access Library - Type T01, European Release User Interface (API)

R01US0079ED0103 43
User Manual

 Return value

 Type Description

const uint8_t *

The library version is a string value in the following
format: “DH850T01xxxxxYZabcD”

Please check function description below for details.

Pre-
conditions:

None

Post-
conditions:

None

Description:

Example:

uint8_t * vstr = (uint8_t *)R_FDL_GetVersionString ();

Figure 12: Version string

D H850 T01 xxxxx Y Z abc D

Optional character, identifying

different engineering versions

Library version number a.bc

"E" for engineering version

"V" for normal version

Coded information about the

used memory/register model. If

no information is coded, the

library is a generic library valid

for all memory/register models.

Coded information about the supported compiler.

If no information is coded, the library is a source

code library valid for different compilers.

Library type T01=Type01

MCU series name H850=RH850

Flash Code/Data library S=Code / D=Data

Data Flash Access Library - Type T01, European Release User Interface (API)

R01US0079ED0103 44
User Manual

4.5 Commands

The following sub-chapters describe the Flash operations that can be initiated and controlled by the
library.

In general, all FDL commands can be handled in the same way as illustrated in Figure 13:

1. The requester fills up the private request variable my_request (command definition).

2. The requester tries to initiate the command execution by R_FDL_Execute(&my_request).

3. The requester has to call R_FDL_Handler to proceed the FDL command execution as long the

request is being processed (i.e. my_request.status_enu == R_FDL_BUSY).

4. After finishing the command (i.e. my_request.status_enu != R_FDL_BUSY) the requester

has to analyse the status to detect potential errors.

Figure 13: Generic command execution flow

start command execution

end of command execution

fill request variable

my_request

R_FDL_Execute

(&my_request)

R_FDL_Handler()

error handling

my_request.status_enu ?

<other>

R_FDL_BUSY

other user application

processing

1

2

3

4my_request.status_enu ?

<other>

R_FDL_OK

Data Flash Access Library - Type T01, European Release User Interface (API)

R01US0079ED0103 45
User Manual

4.5.1 R_FDL_CMD_ERASE

The erase command can be used to erase a number of Flash blocks defined by a start block and the
number of blocks.

The members of the request structure given to R_FDL_Execute are described in the following table:

Table 3: Request structure usage for erase command

Structure member Value Description

command_enu R_FDL_CMD_ERASE Request a block erase operation

bufAddr_u32 - Not used

idx_u32 {uint32_t number}

Number of the first block to be erased. Flash
blocks are defined by the erase granularity
that is 64 Bytes, e.g.:

block 0: 0x00 ... 0x3F

block 1: 0x40 ... 0x7F

...

cnt_u16 {uint16_t number} Numbers of blocks to erase

accessType_enu
R_FDL_ACCESS_USER /
R_FDL_ACCESS_EEL

Selects the Flash pool in which the command
will be able to operate.

status_enu -

This is an output member. It contains the
status of the operation during and after the
execution. Possible values are described in
the next table.

The following table describes all possible status returns:

Table 4: Erase operation returned status

Status Background and Handling

R_FDL_BUSY

meaning Operation started successfully

reason No problems during execution

remedy
Call R_FDL_Handler until the Flash operation is finished,

reported by the request structure status return value

R_FDL_OK
(1)

meaning Operation finished successfully

reason No problems during execution

remedy Nothing

R_FDL_SUSPENDED
(1)

meaning An on-going Flash operation was successfully suspended

reason Suspend processing successfully finished

remedy
Start another operation or resume the suspended
operation

R_FDL_ERR_PARAMETER
(2)

meaning Current command is rejected

reason

Wrong command parameters:

 access is made outside of physically available Data
Flash

 command shall operate in User-pool but
accessType_enu is not R_FDL_ACCESS_USER

 command shall operate in EEL-pool but

accessType_enu is not R_FDL_ACCESS_EEL

 cnt_u16 is 0 or it is too big

Data Flash Access Library - Type T01, European Release User Interface (API)

R01US0079ED0103 46
User Manual

Status Background and Handling

remedy
Refrain from further Flash operations and investigate in the
root cause

R_FDL_ERR_PROTECTION

meaning Current command is rejected

reason

 To gain robustness, the parameter check is repeated
right before Flash modification and returns the
protection error in case of a violation (e.g. due to an
unwanted variable modification)

 Other device specific protection mechanisms (e.g.
security unit like ICU or FHVE protection mechanisms
prevent Flash operations.

remedy
Refrain from further Flash operations and investigate in the
root cause

R_FDL_ERR_REJECTED
(2)

meaning Current command is rejected

reason Another operation is ongoing

remedy
Request again the command when the preceding
command has finished

R_FDL_ERR_ERASE
(1)

meaning At least one bit within the specified blocks is not erased

reason
Hardware defect: one or more Flash bits could not be
erased completely

remedy
A Flash block respectively the complete Data Flash should
be considered as defect

R_FDL_ERR_INTERNAL
(1)

meaning
A library internal error occurred, which could not happen in
case of normal application execution

reason

 Application bug (e.g. program run-away, destroyed
program counter) or hardware problem

 Only on older F1x devices: failed ID code
authentication supplied in the device descriptor. See
section 4.2 ”Run-time configuration” for details about
ID code

remedy
Refrain from further Flash operations and investigate in the
root cause

(1)
 R_FDL_Execute will never set this status code

(2)
 R_FDL_Handler will never set this status code

4.5.2 R_FDL_CMD_WRITE

The write command can be used to write a number of data words located in the RAM into the Data Flash
at the location specified by the virtual target address.

Note:

It is not allowed to “Overwrite” data, which means writing data to already partly or completely written Flash
area. Please always erase the targeted area before writing into it.

The members of the request structure given to R_FDL_Execute are described in the following table:

Table 5: Request structure usage for write command

Structure member Value Description

command_enu R_FDL_CMD_WRITE Request a write operation

Data Flash Access Library - Type T01, European Release User Interface (API)

R01US0079ED0103 47
User Manual

Structure member Value Description

bufAddr_u32 {uint32_t number}
Address of the buffer containing the source
data to be written.

idx_u32 {uint32_t number}
The virtual start address for writing in Data
Flash aligned to word size (4 Bytes).

cnt_u16 {uint16_t number} Number of words to write.

accessType_enu
R_FDL_ACCESS_USER /
R_FDL_ACCESS_EEL

Selects the Flash pool in which the command
will be able to operate.

status_enu -

This is an output member. It contains the
status of the operation during and after the
execution. Possible values are described in
the next table.

The following table describes all possible status returns:

Table 6: Write operation returned status

Status Background and Handling

R_FDL_BUSY

meaning Operation started successfully

reason No problems during execution

remedy
Call R_FDL_Handler until the Flash operation is finished,

reported by the request structure status return value

R_FDL_OK
(1)

meaning Operation finished successfully

reason No problems during execution

remedy Nothing

R_FDL_SUSPENDED
(1)

meaning An on-going Flash operation was successfully suspended

reason Suspend processing successfully finished

remedy
Start another operation or resume the suspended
operation

R_FDL_ERR_PARAMETER
(2)

meaning Current command is rejected

reason

Wrong command parameters:

 access is made outside of physically available Data
Flash

 command shall operate in User-pool but

accessType_enu is not R_FDL_ACCESS_USER

 command shall operate in EEL-pool but

accessType_enu is not R_FDL_ACCESS_EEL

 cnt_u16 is 0 or it is too big

 flash writing address is not aligned with granularity
(4 bytes)

remedy
Refrain from further Flash operations and investigate in the
root cause

R_FDL_ERR_PROTECTION meaning Current command is rejected

Data Flash Access Library - Type T01, European Release User Interface (API)

R01US0079ED0103 48
User Manual

Status Background and Handling

reason

 To gain robustness, the parameter check is repeated
right before Flash modification and returns the
protection error in case of a violation (e.g. due to an
unwanted variable modification)

 Other device specific protection mechanisms (e.g.
security unit like ICU or FHVE protection mechanisms
prevent Flash operations.

remedy
Refrain from further Flash operations and investigate in the
root cause

R_FDL_ERR_REJECTED
(2)

meaning Current command is rejected

reason Another operation is ongoing

remedy
Request again the command when the preceding
command has finished

R_FDL_ERR_WRITE
(1)

meaning At least one data could not be written correctly

reason

 User flow defect: tried to “overwrite” data (write into
non-erased cells)

 Hardware defect: one or more Flash bits could not be
written

remedy

Erase write area before writing.

A Flash block respectively the complete Data Flash should
be considered as defect

R_FDL_ERR_INTERNAL
(1)

meaning
A library internal error occurred, which could not happen in
case of normal application execution

reason

 Application bug (e.g. program run-away, destroyed
program counter) or hardware problem

 Only on older F1x devices: failed ID code
authentication supplied in the device descriptor. See
section 4.2 ”Run-time configuration” for details about
ID code

remedy
Refrain from further Flash operations and investigate in the
root cause

(1)
 R_FDL_Execute will never set this status code

(2)
 R_FDL_Handler will never set this status code

4.5.3 R_FDL_CMD_BLANKCHECK

The blank check command can be used by the requester to check whether a specified amount of memory
starting from a specified address is written. This command will stop at the first memory location that is not

erased with status R_FDL_ERR_BLANKCHECK.

Notes:

1. On blank check fail, the cells are surely not blank. This might result from successfully written cells, but
also from interrupted erase or write operations.

 On blank check pass, the cells are surely not written. This might result from successfully erased cells, 2.
but also from interrupted erase or write operations.

 Depending on the Flash operations use case (e.g. EEPROM emulation) it may be necessary to log 3.
the Flash operations results in order to be sure that Flash cells are correctly written or erased. The
way of logging depends on the use case (e.g. as part of a EEPROM Emulation concept)

Data Flash Access Library - Type T01, European Release User Interface (API)

R01US0079ED0103 49
User Manual

 Internally blankcheck operation is split into smaller operations every time the operation crosses a 4.
0x4000 bytes boundary. This means that time to suspend is not going to exceed the time to fully
perform a blankcheck on 0x4000 bytes.

The members of the request structure given to R_FDL_Execute are described in the following table:

Table 7: Request structure usage for blank check command

Structure member Value Description

command_enu R_FDL_CMD_BLANKCHECK Request a blank check operation

bufAddr_u32 - Not used

idx_u32 {uint32_t number}

Input: The virtual start address for performing
blank check in data flash. Must be word (4
bytes) aligned.

Output: Fail address in case of blank check
error, unchanged if the operation finishes with
R_FDL_OK.

cnt_u16 {uint16_t number} Number of words (4 bytes) to check

accessType_enu
R_FDL_ACCESS_USER /
R_FDL_ACCESS_EEL

Selects the Flash pool in which the command
will be able to operate.

status_enu -

This is an output member. It contains the
status of the operation during and after the
execution. Possible values are described in
the next table.

The following table describes all possible status returns:

Table 8: Blank check operation returned status

Status Background and Handling

R_FDL_BUSY

meaning Operation started successfully

reason No problems during execution

remedy
Call R_FDL_Handler until the Flash operation is finished,

reported by the request structure status return value

R_FDL_OK
(1)

meaning Operation finished successfully

reason No problems during execution

remedy Nothing

R_FDL_SUSPENDED
(1)

meaning An on-going Flash operation was successfully suspended

reason Suspend processing successfully finished

remedy Start another operation or resume the suspended
operation

R_FDL_ERR_PARAMETER
(2)

 meaning Current command is rejected

Data Flash Access Library - Type T01, European Release User Interface (API)

R01US0079ED0103 50
User Manual

Status Background and Handling

reason

Wrong command parameters:

 access is made outside of physically available Data
Flash

 command shall operate in User-pool but

accessType_enu is not R_FDL_ACCESS_USER

 command shall operate in EEL-pool but

accessType_enu is not R_FDL_ACCESS_EEL

 cnt_u16 is 0 or it is too big

 flash blank check address is not aligned with
granularity (4 bytes)

remedy Refrain from further Flash operations and investigate in the
root cause

R_FDL_ERR_PROTECTION

meaning Current command is rejected

reason

 To gain robustness, the parameter check is repeated
right before Flash modification and returns the
protection error in case of a violation (e.g. due to an
unwanted variable modification)

 Other device specific protection mechanisms (e.g.
security unit like ICU or FHVE protection mechanisms
prevent Flash operations.

remedy Refrain from further Flash operations and investigate in the
root cause

R_FDL_ERR_REJECTED
(2)

meaning Current command is rejected

reason Another operation is ongoing

remedy Request again the command when the preceding
command has finished

R_FDL_ERR_BLANKCHECK
(1)

meaning At least one bit within the specified blocks is not blank

reason For any bit in the specified range the voltage level is below
specification for a blank cell

remedy

Remedy depends on the usage:

 nothing to do if only checking the area

 perform an erase if needed or

 consider the checked area as defect if

R_FDL_CMD_BLANKCHECK command fails when

executed immediately after an erase operation on the
same area

R_FDL_ERR_INTERNAL
(1)

meaning A library internal error occurred, which could not happen in
case of normal application execution

reason

 Application bug (e.g. program run-away, destroyed
program counter) or hardware problem

 Only on older F1x devices: failed ID code
authentication supplied in the device descriptor. See
section 4.2 ”Run-time configuration” for details about
ID code

remedy Refrain from further Flash operations and investigate in the
root cause

(1)
 R_FDL_Execute will never set this status code

Data Flash Access Library - Type T01, European Release User Interface (API)

R01US0079ED0103 51
User Manual

(2)
 R_FDL_Handler will never set this status code

4.5.4 R_FDL_CMD_READ

The read operation will read a certain address range in the Data Flash and copy the data to the specified
target buffer.

A higher level EEPROM Emulation library may want to read Data Flash addresses which are possibly not
completely written or erased. Reading those addresses would most probably result in an ECC error
interrupt request which must be handled by the user application. This behaviour is usually not intended as
an emulation library would have to deal with the errors.

Based on these considerations, the read operation of the FDL temporarily disables the interrupt
generation for ECC errors. The status of ECC interrupt generation is restored when the operation is
finished. Errors detected during read operation are signalled to the user application by the request

structure status_enu variable and idx_u32 variable.

In case of single bit error the data read will be continued and the 1st occurrence of the ECC error will be
returned. In case of double bit error, the read operation is stopped and the fail address is returned. In
case of a previous single bit error detected, the fail address of the single bit error is overwritten.

Read command execution is synchronous to execution of R_FDL_Execute function. Therefore this

command cannot be suspended and does not need to be processed by R_FDL_Handler function.

The members of the request structure given to R_FDL_Execute are described in the following table:

Table 9: Request structure usage for read command

Structure member Value Description

command_enu R_FDL_CMD_READ Request a read operation

bufAddr_u32 {uint32_t number}
Data destination buffer address in RAM.

Note: The buffer must be 32 bit aligned!

idx_u32 {uint32_t number}
Data Flash virtual address from where to
read. Must be word (4 bytes) aligned.

cnt_u16 {uint16_t number} Numbers of words (4 bytes) to read

accessType_enu
R_FDL_ACCESS_USER /
R_FDL_ACCESS_EEL

Selects the Flash pool in which the command
will be able to operate.

status_enu -

This is an output member. It contains the
status of the operation during and after the
execution. Possible values are described in
the next table.

The following table describes all possible status returns:

Table 10: Read operation returned status

Status Background and Handling

R_FDL_OK

meaning Operation finished successfully

reason No problems during execution

remedy Nothing

R_FDL_ERR_PARAMETER meaning Current command is rejected

Data Flash Access Library - Type T01, European Release User Interface (API)

R01US0079ED0103 52
User Manual

Status Background and Handling

reason

Wrong command parameters:

 access is made outside of physically available Data
Flash

 command shall operate in User-pool but

accessType_enu is not R_FDL_ACCESS_USER

 command shall operate in EEL-pool but

accessType_enu is not R_FDL_ACCESS_EEL

 cnt_u16 is 0 or it is too big

 flash read address is not aligned with granularity (4
bytes)

remedy Refrain from further Flash operations and investigate in the
root cause

R_FDL_ERR_PROTECTION

meaning Current command is rejected

reason

 To gain robustness, the parameter check is repeated
right before Flash modification and returns the
protection error in case of a violation (e.g. due to an
unwanted variable modification)

 Other device specific protection mechanisms (e.g.
security unit like ICU or FHVE protection mechanisms
prevent Flash operations.

remedy Refrain from further Flash operations and investigate in the
root cause

R_FDL_ERR_REJECTED

meaning Current command is rejected

reason Another operation is ongoing

remedy Request again the command when the preceding
command has finished

R_FDL_ERR_ECC_SED

meaning
A data word contains a single bit ECC error. Single bit
errors are automatically corrected by the ECC logic.

Note: The first occurrence of the fail address is returned.

reason

 Not completely written or erase Flash

 Cell level degradation by time

 Hardware defect

remedy

A single bit error is acceptable if resulting from degradation
by time. Depending on the data handling concept on top,
the affected data should be refreshed (Erased and
rewritten) in order to remove the error.

R_FDL_ERR_ECC_DED

meaning

A data word contains a multiple bit ECC error. This error
cannot be corrected by the ECC logic.

Note: The read operation will stop at the failing address
and the fail address is returned.

reason

 Not completely written or erase Flash

 Cell level degradation by time.

 Hardware defect

Data Flash Access Library - Type T01, European Release User Interface (API)

R01US0079ED0103 53
User Manual

Status Background and Handling

remedy

A multiple bit error can appear when caused by not
completely written or erased Flash. The reaction depends
on the data handling concept. In case of expected
completely written Flash a multiple bit error would mean
loss of data. Refrain from further Flash operations and
investigate in the root cause

R_FDL_ERR_INTERNAL

meaning A library internal error occurred, which could not happen in
case of normal application execution

reason

 Application bug (e.g. program run-away, destroyed
program counter) or hardware problem

 Only on older F1x devices: failed ID code
authentication supplied in the device descriptor. See
section 4.2 ”Run-time configuration” for details about
ID code

remedy Refrain from further Flash operations and investigate in the
root cause

The following figure shows the handling of ECC error registers during read command execution:

Data Flash Access Library - Type T01, European Release User Interface (API)

R01US0079ED0103 54
User Manual

The user shall take into consideration that the following registers are modified:

1. DFERSTC register is written to clear any errors in DFFSTERSTR

2. DFERRINT register is backed up and cleared

3. DFERRINT register is restored

R_FDL_CMD_READ Start

Single bit error

Read ECC errors

Clear ECC errors
Backup ECC interrupt status
Disable ECC interrupt status

Read data from Data Flash into
destination buffer

Double bit error

Last read address ?

Clear ECC errors
Restore ECC interrupt status

Y

N

Save address that
provoked the ECC error

N

N

R_FDL_CMD_READ End

Y

Y

Save address that
provoked the ECC error

1

2

1

3

Figure 14: Handling of ECC error registers during read command

Data Flash Access Library - Type T01, European Release Library Setup and Usage

R01US0079ED0103 55
User Manual

Chapter 5 Library Setup and Usage

This chapter contains important information about how to put the FDL into operation and how to integrate
it into your application. Please read this chapter carefully — and also especially Chapter 6 “Cautions” —
in order to avoid problems and misbehaviour of the library. Before integrating the library into your project
however, please make sure that you have read and understood how the FDL works and which basic
concepts are used (see Chapter 2 “Architecture” and Chapter 3 “Functional Specifications”).

5.1 Obtaining the library

The FDL is provided by means of an installer via the Renesas homepage at

http://www.renesas.eu/update

Please follow the instructions of the installer carefully. Please ensure to always work on the latest version
of the library.

5.2 File structure

The library is delivered as a complete compilable sample project which contains the FDL and in addition
an application sample to show the library implementation and usage in the target application.

The delivery package contains dedicated directories for the library, containing the source and the header
files.

5.2.1 Overview

The following picture contains the library and the application related files:

Figure 15: File structure of library and sample application

Libray

r_fdl_... .a/lib

FAL_...c

FAL_...c

r_fdl_... .c

Precompiled

Library

Source Code

Library

User

fdl_descriptor.c

FAL_...c

FAL_...c

main.c

Descriptors

Passed to the

library

Source Code

Application

r_fdl.h

fdl_cfg.h

Library Files – Fix, may not be touched by the user

Library pre-compile configuration (Only on souce code delivery) – File name fix, File content user configurable

Application (User) Code – Completely in the hand of the user

Library

Configuration

API declaration

fdl_descriptor.h

http://www.renesas.eu/update

Data Flash Access Library - Type T01, European Release Library Setup and Usage

R01US0079ED0103 56
User Manual

The library must be configured for compilation. The file fdl_cfg.h contains defines for that. As it is

included by the library source files, the file contents may be modified by the user, but the file name may
not.

These files reflect an example, how the library descriptor variable can be built up and passed to the

function R_FDL_Init for run-time configuration. The structure of the descriptor is defined in

r_fdl_types.h which needs to be included in the user application. The value definition should be done

in the file fdl_descriptor.h. The constant variable definition and value assignment should be done in

the file fdl_descriptor.c. If adding the files r_fdl_ descriptor.c/h to the application, only the

file fdl_descriptor.h needs to be adapted by the user, while fdl_descriptor.c may remain

unchanged. For usage please refer to chapter 4.2 “Run-time configuration”.

5.2.2 Delivery package directory structure and files

The following table contains all files installed by the library installer:

 Files in red belong to the build environment, controlling the compile, link and target build process

 Files in blue belong to the sample application

 Files in green are description files only

 Files in black belong to the FDL

Table 11: File structure of the FDL package

File Description

<installation_folder>

Release.txt Library package release notes.

<installation_folder>/Make

GNUPublicLicense.txt GNU Make utility license file

Readme.txt Extra information for source code of GNU Make

make.exe

Minimal installation of GNU Make utility libiconv2.dll

libintl3.dll

setup.exe GNU Make installer package

<installation_folder>/<device_name>/<compiler>

Build.bat Batch file to build the FDL sample application

Clean.bat Batch file to clean the FDL sample application

Makefile Make file that controls the build and clean process

<installation_folder>/<device_name>/<compiler>/Sample

dr7f701035_startup.850
(2)

 <for GHS compiler>
Device and compiler specific start-up code

cstart.asm
(2)

 <for REC compiler>

dr7f701035.ld
(2)

 <for GHS compiler>
Compiler specific linker directives

dr7f701035.dir
(2)

 <for REC compiler>

dr7f701035_0.h
(2)

dr7f701035_irq.h
(2)

io_macros_v2.h
(2)

<for GHS compiler>
Definitions of IO registers, interrupt and exceptions
vector table, for RH850 device

iodefine.h
(2)

vecttbl.asm
(2)

<for REC compiler>

Data Flash Access Library - Type T01, European Release Library Setup and Usage

R01US0079ED0103 57
User Manual

File Description

eel_cfg.h
(1)

 EEL pre-compile definitions

eel_descriptor.c
(1)

EEL descriptor used in the sample application

eel_descriptor.h
(1)

sampleapp.h

Sample application code sampleapp_control.c

sampleapp_main.c

fdl_cfg.h FDL pre-compile definitions

fdl_descriptor.c
FDL descriptor used in the sample application

fdl_descriptor.h

fdl_user.c User defined code for handling interrupts and library
pre-initialization fdl_user.h

target.h Initialization code for target microcontroller

r_typedefs.h C types used by FDL library

<installation_folder>/<device_name>/<compiler>/Sample/EEL
(1)

r_eel.h
(1)

 EEL API definitions

r_eel_mem_map.h
(1)

 Section mapping definitions

r_eel_types.h
(1)

 User interface type definitions, error and status
codes

<installation_folder>/<device_name>/<compiler>/Sample/EEL/lib
(1)

r_eel_basic_fct.c
(1)

EEL main source code

r_eel_user_if.c
(1)

r_eel_global.h
(1)

 Global variables and settings

<installation_folder>/<device_name>/<compiler>/Sample/FDL

r_fdl.h FDL API definitions

r_fdl_mem_map.h Section mapping definitions

r_fdl_types.h User interface type definitions, error and status
codes

<installation_folder>/<device_name>/<compiler>/Sample/FDL/lib

r_fdl_env.h Internal FDL definitions

r_fdl_global.h Global variables and settings

r_fdl_hw_access.c
FDL main source code

r_fdl_user_if.c
(1)

These files are not available if the EEL layer is not part of the delivered package
(2)

 File names are dependent on the chosen device. Shown filenames are valid for F1L devices

Data Flash Access Library - Type T01, European Release Library Setup and Usage

R01US0079ED0103 58
User Manual

5.3 Library resources

5.3.1 Linker sections

The following sections are related to the Data Flash Access Library and need to be defined in the linker
file (please see sample linker directive file for an example):

Data sections:

 R_FDL_DATA

This section contains all FDL internal variables. It can be located either in internal or external RAM.

Code sections:

 R_FDL_CONST

This section contains library internal constant data. It can be located anywhere in the code flash.

 R_FDL_TEXT

FDL code section containing the library code. It can be located anywhere in the code flash.

5.3.2 Stack and Data Buffer

The FDL utilizes the same stack as specified in the user application. It is the developer’s duty to reserve
enough stack for the operation of both, user application and FDL. With source code library it is not
possible to give an exact value for stack consumption. However, an estimate value for the FDL library is:
268 bytes for GHS compiler and 316 bytes for Renesas compiler.

The data buffer used by the FDL refers to the RAM area in which data is located that is to be written into
the data flash. This buffer needs to be allocated and managed by the user.

Note:

In order to allocate the stack and data buffer to a user-specified address, please utilize the link directives
of your framework.

5.4 MISRA Compliance

The FDL code has been tested regarding MISRA
TM

 compliance.

The used tool is the QA C
TM

 Source Code Analyzer which tests against the MISRA
TM

 2004 standard rules.

Note:

"MISRA" is a registered trademark of MIRA Ltd, held on behalf of the MISRA Consortium.

“QA C” is a registered trademark of Programming Research Ltd.

5.5 Sample Application

It is very important to have theoretic background about the Data Flash and the FDL in order to
successfully implement the library into the user application. Therefore it is important to read this user
manual in advance. The best way, after initial reading of the user manual, will be testing the FDL
application sample.

After a first compile run, it will be worth playing around with the library in the debugger. By that you will get
a feeling for the source code files and the working mechanism of the library. After this exercise it might be
easier to understand and follow the recommendations and considerations of this document.

Data Flash Access Library - Type T01, European Release Library Setup and Usage

R01US0079ED0103 59
User Manual

Note:

Before the first compile run, the compiler path must be configured in the “Makefile” of the sample

application: set the variable COMPILER_INSTALL_DIR to the correct compiler directory.

5.6 Library configuration

Before using the Data Flash Access library, the library has to be configured and adapted to a certain
degree in order to fit the requirements of the user application. For information about configuration settings
and handling, please refer to chapter 4.2 “Run-time configuration”.

5.7 Basic Reprogramming Flow

The following flow chart shows the basic reprogramming flow for a certain Data Flash range.

Data Flash Access Library - Type T01, European Release Library Setup and Usage

R01US0079ED0103 60
User Manual

Figure 16: Basic reprogramming flow

Reprogramming start

FDL_Init

Reprogramming end
(Success)

R_FDL_Execute
(&req)

R_FDL_BUSY ==
req.status_enu

N

Y

R_FDL_Handler

User code

execution

Configure request structure req…
(R_FDL_CMD_ERASE)

R_FDL_Execute
(&req)

R_FDL_BUSY ==
req.status_enu

N

Y

R_FDL_Handler

User code

execution

Configure request structure req…
(R_FDL_CMD_WRITE)

All data written?

Y

N

R_FDL_OK ==
req.status_enu

Y

N

R_FDL_OK ==
req.status_enu

Y

N

Reprogramming end
(Error handler)

Reprogramming end
(Error handler)

Flash

Erase

flow

Flash

Write

flow

Data Flash Access Library - Type T01, European Release Library Setup and Usage

R01US0079ED0103 61
User Manual

Error treatment of the FDL functions themselves is not detailed described in the flow charts for
simplification reasons.

For details on enabling or disabling access to the Data Flash, refer to the user's manual for the hardware.

An example is given by the sample application, file sample_app_main.c, functions FDL_Open and

FDL_Close.

5.8 R_FDL_Handler calls

Once initiated FDL operations need to be driven forward by successive handler calls. The frequency of
these handler calls does have an impact on the FDL operation performance and needs to be adapted to
the target application.

In the following, different approaches for calling the R_FDL_Handler are compared with respect to their

advantages and disadvantages:

 Calling R_FDL_Handler repeatedly after starting an operation execution: This approach is also

utilized in most of the code examples you can find in this manual. Typically realized in a loop waiting
for the operation status not to be busy anymore, this approach results in the best FDL operation
performance. However, the CPU is fully loaded and blocked for other tasks as long as the FDL
operation is being executed.

 Calling R_FDL_Handler in a timed task: By calling the R_FDL_Handler periodically, FDL

commands can be driven forward while other tasks are processed by the CPU. The period between
the status check calls can have significant impact on the FDL operation performance. Shorter calling
intervals result in better FDL performance, but also increase the CPU load by the FDL. Due to this
trade off, a general advice for the calling interval cannot be given. It needs to be analysed and tailored
individually for each target application.

 Calling R_FDL_Handler in the idle task: If it is ensured that the idle task is called often enough, this

method might result in a good FDL performance, as the handler can be called continuously. However,
this approach is not deterministic in case of a high CPU load by the application itself.

Due to the individual requirements of each application, a general advice for selecting a strategy to call the

R_FDL_Handler cannot be given. Please also consider that mixtures of the above mentioned

approaches can be meaningful depending on the target scenario.

Note:

When evaluating concepts for calling the R_FDL_Handler, please be aware that all FDL functions are

not re-entrant. That means it is not allowed to call an FDL function from interrupt service routines while
another FDL function is already running.

Data Flash Access Library - Type T01, European Release Cautions

R01US0079ED0103 62
User Manual

Chapter 6 Cautions

Before starting the development of an application using the FDL, please carefully read and understand
the following cautions:

1. CPU operating frequency configuration:

Correct frequency configuration is essential for Flash programming quality and stability. Wrong
configuration could lead to loss of data retention or Flash operation fail.

The limits for CPU frequency are device dependent. Please consult Device Manual for correct
range.

If the CPU frequency is a fractional value, round up the value to the nearest integer.

Do not change power mode (voltage or CPU clock) while FDL is performing a Data Flash
operation. If power mode must change the user can:

 put current operation into stand-by mode and wait until hardware conditions are restored

 wait until operations are no longer busy or

 reinitialize the library with proper CPU frequency value

2. CPU mode:

The initialization function R_FDL_Init must be executed in CPU supervisor mode (register bit

PSW.UM = 0).

3. Function re-entrancy:

All functions are not re-entrant. So, re-entrant calls of any FDL function must be avoided.

4. Task switch, context change, synchronization between functions:

Each function depends on global available information and is able to modify this information. In
order to avoid synchronization problems, it is necessary that at any time only one FDL function is
executed. So, it is not allowed to start an FDL function, then switch to another task context and
execute another FDL function while the last one has not finished.

 Entering power save (stand-by) mode: 5.

Entering power save mode is not allowed at all during on-going Data Flash operations. Use

R_FDL_StandBy or wait until operations are no longer busy.

 Different power save (stand-by) modes: 6.

Other power save modes than HALT will result in Flash hardware internal data loss. So, don’t
enter power save modes except HALT when further FDL operations are intended after wake-up.

If entering other modes, the FDL need to be re-initialized by R_FDL_Init.

7. Initialization:

The FDL library initialization by means of calling R_FDL_Init must be performed before calling

most of the library functions. Exception is R_FDL_GetVersionString function that can be

called anytime.

 Critical Section handling: 8.

The R_FDL_Init function temporarily disables Code Flash. During this time, since the Code

Flash is not available, the library is executing code from internal RAM (allocated space on stack).
Please ensure that:

 Code execution is done from other locations (e.g. internal RAM).

 No access to Code Flash is allowed, e.g. by jump to interrupt/exception functions, direct
Code Flash Read/Execution from the CPU, DMA accesses to Code Flash. The user can

configure the provided callback macro functions in fdl_cfg.h. , in order to handle e.g.

Data Flash Access Library - Type T01, European Release Cautions

R01US0079ED0103 63
User Manual

interrupt & exception disable, DMA,... .The sample application provides examples on how
to disable and restore interrupts and exceptions using the callback routines.

9. Interrupted flash operations:

In case of Flash modification operation (Erase / Write) interruption, the electrical conditions of the
affected Flash range (Flash block on erase, Flash write unit on Write) get undefined. It is
impossible to give a statement on the read value after the interruption. Furthermore, the resulting
read value is not reliable; the electrical margin for the specified data retention may not be given.
In such case, erase and re-write the affected Flash block(s) to ensure data integrity and retention.

10. Write operation:

Before executing a write operation, please make sure the given address range is erased.

11. Reading Data Flash:

Data Flash on RH850 devices is made with differential cells for storage. This means that reading
erased Data Flash areas directly (bypassing FDL) will produce undefined data with a tendency to
the previously written data and it will most probably cause ECC error exceptions. To avoid this

exceptions use R_FDL_CMD_READ command.

DMA transfers from Data Flash are permitted, but need to be synchronized with the FDL.

During command execution Data Flash is not available. Any direct read during command
execution will result in invalid data therefore it must be avoided.

12. Dual operation:

It is not possible to modify the Code Flash in parallel to a modification of the Data Flash or vice
versa due to shared hardware resources.

13. Reusing the request command:

Do not change the content of the request structure while an FDL command is operating because
the library may crash or data loss can occur. Multiple requests, each using different request
structures, do not have these adverse effects.

 Workload and supervision: 14.

It is recommended to supervise the FDL operations and functions execution by timeout
supervision (e.g. timer, counter, watchdog, etc.). In addition, the user of the library should
evaluate the time necessary to perform a certain operation and divide long lasting operations to
meet real-time system specifications.

 Suspend and Stand-by nesting: 15.

It is not always possible to nest suspend and/or stand-by. E.g.:

 Any operation ► suspend ► suspend – is not possible.

 Any operation ► stand-by ► stand-by – is not possible.

 Any operation ► stand-by ► suspend – is not possible.

 Write or Erase ► suspend ► Erase operation – is not possible

 Any operation ► suspend ► other operation ► suspend – is not possible

 Write operation ► suspend ► other Write operation – is not possible

It is recommended to avoid nesting as much as possible.

 Stand-by: 16.

Do not continue FDL functions execution or start execution of any other function than

R_FDL_GetVersionString, R_FDL_WakeUp or R_FDL_Init when the library is in stand-by

mode.

 Data alignment: 17.

Data Flash blocks are aligned to 64 bytes and Data Flash words are aligned to 4 bytes.

Data Flash Access Library - Type T01, European Release Cautions

R01US0079ED0103 64
User Manual

RH850 devices also add alignment restrictions for types larger than 8 bits. Please consult device
hardware manual for details.

 Precompile options 18.

The user must not use any pre-compile configuration options that are not documented in present
manual.

 Supported devices 19.

The RH850 FDL library is supported on 3 device families at the moment of writing of this manual.
These families are E1x, F1x, P1x and R1x (where ‘x’ can be any letter depending on power
consumption, peripherals, etc).

Further device families may be added in the future.

Data Flash Access Library - Type T01, European Release Revision History

R01US0079ED0103 65
User Manual

Revision History

Chapter Page Description

Rev. 1.03:

Initial released document version

R01US0079ED0103

Data Flash Access Library

